5,276 research outputs found

    Artificial neural network prediction of weld distortion rectification using a travelling induction coil

    Get PDF
    An experimental investigation has been carried out to determine the applicability of an induction heating process with a travelling induction coil for the rectification of angular welding distortion. The results obtained from experimentation have been used to create artificial neural network models with the ability to predict the welding induced distortion and the distortion rectification achieved using a travelling induction coil. The experimental results have shown the ability to reduce the angular distortion for 8 mm and 10 mm thick DH36 steel plate and effectively eliminate the distortion on 6 mm thick plate. Results for 6 mm plate also show the existence of a critical induction coil travel speed at which maximum corrective bending occurs. Artificial neural networks have demonstrated the ability to predict the final distortion of the plate after both welding and induction heating. The models have also been used as a tool to determine the optimum speed to minimise the resulting distortion of steel plate after being subjected to both welding and induction heating processes

    Properties of implanted and CVD incorporated nitrogen-vacancy centers: preferential charge state and preferential orientation

    Get PDF
    The combination of the long electron state spin coherence time and the optical coupling of the ground electronic states to an excited state manifold makes the nitrogen-vacancy (NV) center in diamond an attractive candidate for quantum information processing. To date the best spin and optical properties have been found in centers deep within the diamond crystal. For useful devices it will be necessary to engineer NVs with similar properties close to the diamond surface. We report on properties including charge state control and preferential orientation for near surface NVs formed either in CVD growth or through implantation and annealing

    Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNβ3 with sleep measures

    Get PDF
    Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNβ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours

    Nanoscale Torsional Optomechanics

    Full text link
    Optomechanical transduction is demonstrated for nanoscale torsional resonators evanescently coupled to optical microdisk whispering gallery mode resonators. The on-chip, integrated devices are measured using a fully fiber-based system, including a tapered and dimpled optical fiber probe. With a thermomechanically calibrated optomechanical noise floor down to 7 fm/sqrt(Hz), these devices open the door for a wide range of physical measurements involving extremely small torques, as little as 4x10^-20 N*m.Comment: 4 pages, 4 figures - Accepted to APL Oct 22nd, 2012. To appear in February 4th issue - as cover articl

    The delivery of bad news:An integrative review and path forward

    Get PDF
    Managing the delivery of bad news is a crucial component of effective human resource management. However, the diversity of contexts in which this phenomenon has been studied has made it difficult to develop a consolidated theoretical and practical understanding of bad news delivery. Using an interdisciplinary integrative review (N = 685), we critically analyze how bad news delivery has been conceptualized as well as what interdisciplinary theoretical insights and practical guidance can be offered. Beyond identifying key challenges in the extant literature, we also provide a path forward by showcasing key opportunities, including how conceptualizing bad news delivery as a dialectic process that unfolds over time can further enhance theoretical insights and practical guidance for effectively managing bad news delivery in the workplace

    On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity

    Full text link
    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion.Comment: 7 pages, 3 figure

    Understanding non-vaccinating parents' views to inform and improve clinical encounters: A qualitative study in an Australian community

    Get PDF
    © Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. Objectives To explain vaccination refusal in a sample of Australian parents. Design Qualitative design, purposive sampling in a defined population. Setting A geographically bounded community of approximately 30 000 people in regional Australia with high prevalence of vaccination refusal. Participants Semi structured interviews with 32 non-vaccinating parents: 9 fathers, 22 mothers and 1 pregnant woman. Purposive sampling of parents who had decided to discontinue or decline all vaccinations for their children. Recruitment via local advertising then snowballing. Results Thematic analysis focused on explaining decision-making pathways of parents who refuse vaccination. Common patterns in parents' accounts included: perceived deterioration in health in Western societies; a personal experience introducing doubt about vaccine safety; concerns regarding consent; varied encounters with health professionals (dismissive, hindering and helpful); a quest for the real truth'; reactance to system inflexibilities and ongoing risk assessment. Conclusions We suggest responses tailored to the perspectives of non-vaccinating parents to assist professionals in understanding and maintaining empathic clinical relationships with this important patient group

    Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities

    Get PDF
    In this work we present a platform for testing the device performance of a cavity-emitter system, using an ensemble of emitters and a tapered optical fiber. This method provides high-contrast spectra of the cavity modes, selective detection of emitters coupled to the cavity, and an estimate of the device performance in the single- emitter case. Using nitrogen-vacancy (NV) centers in diamond and a GaP optical microcavity, we are able to tune the cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a tapered fiber, and measure the fiber-coupled NV spontaneous emission decay. Theoretically we show that the fiber-coupled average Purcell factor is 2-3 times greater than that of free-space collection; although due to ensemble averaging it is still a factor of 3 less than the Purcell factor of a single, ideally placed center.Comment: 15 pages, 6 figure
    • …
    corecore